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Abstract

This thesis deals with the Job Shop
scheduling with energy limits, which is
an NP-hard problem. This problem is
important for manufacturing and energy
provider because overconsumption leads
to instability of the energy system.

Two exact and four heuristic methods
are considered in this work. The pro-
posed heuristic methods extend existing
approaches. For implementations of ex-
act and some heuristic methods, IBM CP
Optimizer was used, whereas the best
method, which is provided by this work,
doesn’t need any external library. For
comparison of methods, an instance gen-
erator was used, which is proposed by this
work. The instance generator uses the ex-
isting benchmark instances and extends
them with energy limits. The generated
instances were used in experiments to ver-
ify effectiveness and correctness of the
designed methods.

The best heuristic algorithm solves in-
stances, which have size 50 × 15, where
50 is number of jobs and 15 is number of
machines.

Keywords: Scheduling, NP-hard
problem, Job Shop, Constraint
programming, Taboo Search, Global
search, Path Relinking, Energy limits

Supervisor: Ing. István Módos
Department of Control Engineering

Abstrakt

Tato práce se zabývá Job Shop rozvrhová-
ním s ohledem na energetické limity, což
je NP-těžký problém. Tento problém je
důležitý pro výrobní společnosti a dodava-
tele elektrické energie protože nadměrná
spotřeba elektrické energie vede na nesta-
bility energetického systému.

V práce jsou představený dvě exaktní a
čtyři heuristické metody. Navržený heuris-
tické metody používají rozšiřují existující
přístupy. Pro implementaci exaktních a
některých heuristických metod byl pou-
žitý IBM CP Optimizer, ale nejlepší me-
toda, která je představená v teto práci,
nepotřebuje žádné externí knihovny. Pro
porovnání metod v práci je představen
generátor instancí. Generátor instancí po-
užívá existující benchmarkové instance a
rozšiřuje je o energetické limity. Genero-
vané instance byly použitý v experimen-
tech pro verifikaci efektivity a správnosti
vyvinutých metod.

Nejlepší heuristická metoda řeší in-
stance rozměrem 50× 15, kde 50 je počet
jobů 15 je počet strojů.

Klíčová slova: Rozvrhování, NP-těžký
problem, Job Shop, Programování s
omezujícími podmínkami, Taboo Search,
Globální prohledavání, Path Relinking,
Energetické limity

Překlad názvu: Rozvrhování
energeticky náročných operací na více
strojích s ohledem na energetické limity
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Chapter 1

Introduction

This work deals with Job Shop scheduling problem (JSSP) with energy limits.

Production is not the trivial process which needs schedule many operations
on many machines at the same time because this process need manage
algorithms. For example, the wood factory produces paper and carton. For
carton wood must cut on cutting machine, boiling in acid, processing on
carton machine, washing and drying. For paper, wood must cut on cutting
machine, whiten and processing on the paper machine.

Given the economic importance of scheduling exist more works, which is
centered on obtaining the optimal solution. Effective scheduling can improve
output and reduce production cost. The JSSP is strongly NP-hard.

This problem is important for manufacturing because they want to produce
as much as possible products, but also they must fulfill energetic limits
contracted with the energy provider. These limits are important for the
power system because if consumers consume more energy, then power system
have, power system loses stability and can be blackouts. Moreover, the wires
which connect consumers to power system have maximum power capacity.
Overloading of the wires shortness their lifespan. In the contract is written
how much energy plant can consume for a metering interval. If the plant
consumes more than this limit, the plant must pay a penalty for the power
system. In the Czech Republic, the metering interval is 15 minutes.

Figures 1.1 and 1.2 represent benchmark instance schedule for JSSP and
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1. Introduction .....................................
JSSP with energy limits.
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Figure 1.1: JSSP without energy limits
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Figure 1.2: JSSP with energy limits
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.................................... 1.1. Related works

1.1 Related works

For solving JSSP many algorithms exist, however, most of these algorithms
don’t consider energy limits.

Article [BJS92] describes Branch and Bound approach. The principle
of this way is the enumeration and estimating of feasible solutions. The
solutions are represented as a tree. For all nodes without leafs algorithm
calculates successor by fix some operation ordering on the machines. After
each successor is handled by the same way. The examination of a branch
stops if this branch represents only one solution or algorithm proves that
this branch doesn’t contain optimal solution. This approach detects not
the optimal solution as early as possible but in the worst case algorithm
enumerates all solutions. This approach solves the solution size 10x10 in 19
minutes. For larger solutions algorithm need a good initial solution, which it
can get from the heuristic algorithm.

For solving this problem is used Taboo search way, which is described in
articles [ZLGR06] and [MRX01]. This way is based iterative moves between
neighborhoods until the stopping criterion is satisfied. For taboo some
neighborhood is used Taboo List. This list stores solutions, which was
visited recently. The article [ZLGR06] describes effective moves for finding
the neighborhood. Taboo search and neighborhood structure, which are
described in [ZLGR06] is used in this work because Taboo search algorithm
quickly converges to optimal solution and solves large instances.

Article [BV98] describes local search with shifting bottleneck for solving
JSSP. This method is based on the Guided Local Search, which uses neigh-
borhood trees to escape from local optimum. Also, this article describes
the method for estimate schedule makespan. This algorithm solves large
instances, for some of them algorithm improves the best-known solution.

Genetic Algorithm approach for JSSP is described in the article [LC10].
This is a metaheuristic inspired by the natural selection process. Genetic
Algorithm belongs to the class of evolutionary algorithms and is used for
generating high-quality solutions by copying bio-inspired operations such as
mutation, crossover, and selection. In the article design chromosome structure,
crossover and mutation. The crossover is based on generating new solution on
base exist solutions. The mutation changes existing solution for generating a
new one.

3 ctuthesis t1606152353



1. Introduction .....................................
Article [PLC14] describes Taboo Search/Path Relinking algorithm, which

incorporates a Taboo search procedure from [ZLGR06]. The algorithm works
very fast and solves instances which have big size. For Taillard’s instances this
size is 30x20, but for Demirkol instances this size is 50x20. Taboo Search/Path
Relinking algorithm is used in this work.

Also exist another approaches. For example article [WLZW97] describes
optimization approach for solving JSSP. This approach is based on Lagrangian
relaxation. In [BM14] is used the parallel algorithm for solving JSSP. This
approach used opportunities, which provide modern multi-core computers.

All of these articles don’t consider energy limits, which is very important
for enterprises. Few works exist which consider scheduling problems with the
energy limits. In [MvH17] is described the algorithm, which solves scheduling
problem on one machine, but JSSP is considered more than one machine.
This work has used the algorithm, which calculates earliest operation start
time with considering the energy limits.

Article [MA16] is described minimizing energy consumption and makespan
in two-machine Flow Shop scheduling problem. In the Flow Shop scheduling
problem, each work must be processed on the set of machines in a certain
order. This article compares constructive heuristics and multi-constructive
genetic algorithm.

1.2 Contribution of the thesis

The contribution of this work is a problem statement, exact and heuristic
algorithms for solving JSSP with energy limits and experiments, which
compare exact and heuristic approaches.

The exact algorithm needs a lot of memory, which a common customer
computer does not have. On the other hand, our proposed heuristic algorithm
can find solutions for instances, which have size 20×30 and larger and doesn’t
rely on any external commercial solver and find solutions, which have the
similar makespan as the one found by the exact algorithms within the time
limit.

Also we prove, that the problem of makespan calculation with fixed ordering
of operations on the machine with considering the energy limits is NP-hard.

ctuthesis t1606152353 4



................................... 1.3. Thesis overview

1.3 Thesis overview

In problem statement chapter the problem will be formalized and the basic
concepts will be defined.

In algorithm chapter will be described exact and heuristic algorithms for
solving JSSP with energy limits. Exact section 4.1 will describe Optional
Variables approach and Overlap approach. For implementation, these algo-
rithms will use IBM CP Optimizer framework. Heuristic section 4.2 will
describe Taboo search and Path Relinking algorithms and their modification,
which consider energy limits.

In experiment chapter will be shown performance and computation result of
algorithms for different instances, the proposed algorithms will be compared
and will be select the best way.

5 ctuthesis t1606152353
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Chapter 2

Problem statement

2.1 Job Shop without energy limits

In this subsection JSSP without energy limits is outlined. In JSSP we have a
setM = {1..m} of m machines and a set J = {1..n} of n jobs. Each job j ∈ J
consists of nj ordered operations Oj,1..Oj,nj . Let ok be an operation, and
O = {0, 1..o, o+ 1} denotes the set of all operations which must be scheduled,
where operations 0 and o+ 1 are dummy operations, that represent initial
and final operations respectively. Each operation ok ∈ O must be processed
on one dedicated machine h ∈ M and has fixed processing time pk ∈ R≥0,
operations 0 and o+ 1 have no processing time. The processing time is in
an interval, during which machine h processes operation ok. The set of the
operations, which are to be processed on machine h is denoted as Lh.

A machine can process at most one operation at the same time and, once
operation starts processing on the machine, it must complete processing on
the same machine without preemption, i.e., an operation starts and end once.

Let predjk be the job predecessor of the operation ok; the first operation 0
has no predecessor. For each first operation in the jobs, the job predecessor is
operation 0. The job predecessor is an operation which immediately precedes
ok in the same job. The operations are interrelated by two kinds of constraints.
First, the operation ok must be scheduled on the certain machine h. Second,
the operation ok must be scheduled after its predecessor predjk is completed.

7 ctuthesis t1606152353



2. Problem statement ..................................
Let sk be a start time of operation ok. The schedule is an assignment of an

operation to a machine in time. It has fixed operation ordering on machines.
The machine predecessor predmk ∈ Lh is an operation which immediately
precedes operation ok ∈ Lh on machine h ∈M . For the first operations on
machines, the machine predecessor is operation 0.

The goal of JSSP is to find sk which minimize the maximum completion
time of the operations, i.e., makespan:

min max
ok∈O

(sk + pk) (2.1a)

subject to:

sk ≥ 0, ok ∈ O (2.1b)
sk ≥ spredjk

+ ppredjk
, k = 1...o+ 1 (2.1c)

si − sj ≥ pi or sj − si ≥ pj , oi ∈ Lh, oj ∈ Lh, oi 6= oj , h ∈M (2.1d)

The equation 2.1a is an objective function which minimizes makespan.
Constraint 2.1b requires that the start time of all the operations not be
negative. Equation 2.1c sets job precedence among operations of the same job.
Constraint 2.1d prohibits overlaps between operations on the same machine.

2.1.1 Disjunctive graph

To illustrate schedules and makespan computation the JSSP is typically
represented by disjunctive graph G = (O,A,

⋃m
h=1Ah) [ZLGR06]. In this

graph, O is the set of vertices which correspond to the operation set, A is
a set of conjunctive arcs, which connect consecutive operations of the same
job A = {(k, k + 1) | k = 1, 2....hj − 1, j ∈ J},

⋃m
h=1Ah is a set of disjunctive

arcs connecting operations of the same machine. The length of (i, j) ∈ A is
pi. The length of (i, j) ∈

⋃m
h=1Ah is processing time pi.

The graph G can be split into sub-graph D = (O,A) and m sub-cliques
Gh = (Oh, Ah). For each graph Gh we define a selection Sh ∈ Ah so that

ctuthesis t1606152353 8



.............................2.1. Job Shop without energy limits

each disjunctive arc is replaced by conjunctive arc so that Sh must be total
ordering, which contains all operations from Gh. This information allows
defining the feasible solution S as a tuple (O,A,

⋃m
h=1 Sh).

The critical path is the longest path from dummy operation 0 to dummy
operation o+ 1 in the graph. The length of this path is equal to makespan of
the feasible solution. Operations which belong to this path are called critical
operations. A sequence of critical operations that are processed on the same
machine one after another is called critical block.

For example, consider three jobs and three machines problem is that given
in table 2.1. Conjunctive-disjunctive graph for this example is shown in figure
2.1. The feasible solution is represented in figure 2.2. The number, which
associated with an operation is its start time in the solution. The critical
path is highlighted by a fat line, and its length is 170.

Job (Machine, Processing Time)
Job 1 (1, 50) (2, 30) (3, 60)
Job 2 (3, 40) (1, 10) (2, 20)
Job 3 (2, 20) (3, 20) (1, 10)

Table 2.1: An example without energy limits
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Figure 2.1: Conjunctive-disjunctive graph of the example
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Figure 2.2: The solution of the example
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2. Problem statement ..................................
2.2 Job Shop with energy limits

In this section, we extend JSSP with the additional constraint that takes
energy limits into account.

In addition to JSSP, each machine h is consuming power Pk ∈ R>0 when h
is processing operation ok. The total consumed energy of ok is then computed
as Pk· pk.

The operations have to be scheduled within a scheduling horizon H ∈ Z>0.
The scheduling horizon is divided into a set of metering intervals Ω = {1..HD}
where D ∈ Z>0 is a metering interval length and H is divisible by D. For all
metering intervals ωe ∈ Ω we define energy limit Emax, which represents the
upper bound of energy consumption, i.e., the energy limit. Moreover, the
intersection length between metering interval ωe and operation ok is denoted
as Overlap(ωe, ok).

The energy limits require that for all metering intervals ωe ∈ Ω, the energy
consumption of the operations in the metering interval is less or equal then
the energy limit Emax, i.e:

∑
ok∈O1

Overlap(ωe, ok) · Pk ≤ Emax, ωe ∈ Ω (2.2)

The overlap depends on start time sk of the operation ok and its processing
time pk.

A formulation for JSSP with energy limits is the extension of the JSSP
problem presented in section 2.2 with the constraints for energy limits 2.3e.

min max
ok∈O

(sk + pk) (2.3a)

subject to:

ctuthesis t1606152353 10



...................................... 2.3. Example

sk ≥ 0, k ∈ O (2.3b)
sk ≥ spredjk

+ ppredjk
, k = 1...o+ 1 (2.3c)

si − sj ≥ pi or sj − si ≥ pj , (oi, oj) ∈ Lh, h ∈M (2.3d)∑
ok∈O

Overlap(ωe, ok) · Pk ≤ Emax, ωe ∈ Ω (2.3e)

2.3 Example

We extend the example 2.1 with power consumption of the operations and
energy limits. The solution of example is in table 2.2. The figures 2.3 and 2.4
represent solutions with the same ordering. The tuples, which are associated
with the operations on Gantt diagram represent (a job, operation number in
the job). Operations, which belong to the same job have the same color.

Notice, that in some cases we need to shift operation to decrease the overlap
with some metering intervals to decrease energy consumption in them. For
example operation (2,3) was shifted. The solution for the instance with energy
limits has larger makespan than the solution without them because additional
constraints decrease space of solutions.

Job (Machine, Processing Time, Power)
Job 1 (1, 50, 3) (2, 30, 5) (3, 60, 5)
Job 2 (3, 40, 2) (1, 10, 6) (2, 20, 5)
Job 3 (2, 20, 3) (3, 20, 7) (1, 10, 6)

Table 2.2: An extended example

11 ctuthesis t1606152353



2. Problem statement ..................................
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Figure 2.3: Gantt chart of the solution for example without energy limits
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Figure 2.4: Gantt chart of the solution for example with energy limits
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Chapter 3

Theoretical background

This section describes the theoretical background to the algorithms, which is
used for the solving JSSP with energy limits. The exact methods are built
on the Constraint programming, whereas it heuristic methods use the Taboo
search.

3.1 Constraint programming

The Constraint programming is the form of declarative programming in which
relations between variables are stated in the form of constraints.

Formally, letX = {x1, x2...xn} be a finite set of variables,D = {D1, D2...Dn}
be a finite set of domains of variables, C = {C1, C2...Cm} is finite set of con-
straints. The domain Di is the set of all possible values of xi. The constraint
Ci is a statement, which consists of the subset X ′i ⊆ X and relation Ri on
X ′i. f(X) is the objective function. The solution is the complete assignment
for all variables xi from their domains such that all constraints are satisfied
and f(X) is optimal.

In scheduling metering intervals and operations can be represented as
interval variables, for which start, end, and length are defined. The variable
can be optional, which means that we can decide not to consider it in the
solution. A present optional variable is variable, which is considering in the

13 ctuthesis t1606152353



3. Theoretical background ................................
solution.

Examples of constraints, which are used in the Constraint programming
from [IBM]:..1. EndBeforeStart(a, b) constraint requires that if the optional variables

a and b are present in the solution then end(a) ≤ start(b)...2. StartBeforeEnd(a, b) constraint requires that if the optional variables
a and b are present in the solution then start(a) ≤ end(b)...3. EndMax(a) ≤ A constraint requires that if the optional interval variable
a are present in the solution then end(a) ≤ A..4. StartMin(a) ≥ A constraint requires that if the optional interval variable
a is present in the solution then start(a) ≥ A..5. Span(a, {b1, b2...bn}) constraint requires that interval variable a must
spans over all present interval variables bi if a presents in the solution,
i.e., formally (start(a) ≤ start(bi)) ∧ (end(a) ≥ end(bi)), ∀bi..6. NoOverlap(a1, a2...an) constraint requires that all present interval vari-
ables from the set {a1, a2...an} are pairwise non-overlapping.

3.2 Local Search

Local Search is a heuristic method, which is used for solving hard optimization
problems. This algorithm can be formulated as finding a solution which
corresponds to the best criterion function. In each iteration, Local Search
generates set of neighbors around a current solution, which is called seed,
selects from the neighbors the best one according to the objective function,
which becomes a seed for the next iteration. For generating the neighbors
around the seed, Local Search uses the Neighborhood structure, which is a
rule, that perturbs the seed to generate candidates solutions.

The algorithm doesn’t remember the old solutions, which leads to the
problem: Local Search can’t escape from a local optimum.

ctuthesis t1606152353 14



.................................... 3.3. Taboo Search

3.3 Taboo Search

Taboo Search algorithm from [GL97] is the well-known heuristic for the
global optimization. This algorithm has been applied to many combinatorial
problems. Basically, this is the Local Search, which can move between local
optimums.

The previous solutions store in the taboo set. When Taboo Search finds a
new solution, it checks if this solution is not in the taboo set. If the taboo
set contains the solution Taboo Search selects another solution from the
neighborhoods. This approach helps to escape from local optimum which is
in contrast to Local Search, because Taboo Search is not allowed to return to
solutions, which where visited before (within the capacity of taboo list).

3.4 Relinking procedure

In some cases, the Taboo Search can’t leave a local optimum and get to
the global optimum. Relinking procedure generates new solutions from the
high-quality solutions. For two solutions Si and Sg, Relinking procedure
generates so called PathSet, which is a set of the solutions. The first solution
Si is called initial, the second Sg is called Guiding. To create this set the
Relinking procedure do perturbation in Initial solution, so those perturbations
leads to the Guiding solution. After each perturbation new solution is added
to the PathSet.

After the solutions on the path are generated, each of the solutions is tried
to be improved by slightly Taboo search with small iteration count, and the
algorithm selects the solution, which has the best criterion. At the end, the
best solution will be improved by strong Taboo search with large iteration
count as far as possible and will be returned by Relinking procedure.

As can be seen from figure 3.1, Taboo Search without the Relinking
procedure can’t get the solution Sglobal from solutions Si and Sg because it
can’t escape these local optimal solutions in define iteration count. However if
Taboo Search obtains solutions S3 or S4 it can convergence to global optimal
solution Sglobal.
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Solutions

objective

Si

Sg

Sglobal

S3
S4

Figure 3.1: Heuristic principle
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Chapter 4

Algorithms for JSSP with energy limits

This chapter explains algorithms, which are used to solve the scheduling
problem described in Chapter 2. The first part explains the exact methods,
which always find the optimal solution, but they need a lot of time to find.
Therefore, exact methods can typically solve only small instances.

The the second part describes the heuristic methods, which find suboptimal
solutions, but don’t need a lot of time and usually found a solution that is
close to the optimal one. Therefore, heuristic solutions are used in practice
for solving large instances.

4.1 Exact methods

For the exact methods, Constraint programming is used because the problem
has complex constraints, which are difficult to describe by ILP.

JSSP with energy limits was formulated in two approaches. The first
approach is based on the optional variables, whereas the second one is based
on computing the overlap between metering intervals and operations.
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4. Algorithms for JSSP with energy limits .........................
4.1.1 Optional Variables

In this method, each operation is represented by two ways: as an interval
variable, which length is processing time of the operation, and as a set of
optional interval variables, which represent the overlap between the operation
and metering intervals ωe ∈ Ω.

For ensuring consistency between two representations, we introduce the
following constraints. The first one: the sum of lengths of optional interval
variables from the set of optional variables, which corresponds the operation,
and its length must be equal. The second one: interval variable, which
represents the operation, must start with the first present optional interval
variable from the set of optional variables, which belongs it, and must end
with the last one. The first constraint requires that the sum of parts of the
operation in each metering interval must be equals to the processing time of the
entire operation. The second constraint ensures that the operation overlaps
all its appearances in metering intervals from the set. These constraints don’t
allow case, which is shown on the figure 4.1, because (start(tie) ≥ start(ti))∧
(end(tie) ≤ end(ti)), interval can’t overlap each other and

∑
ωe∈Ω(tie) = ti.

Energy consumption for each metering interval is computed as a sum of
all variables, which represent overlap operations with this metering interval,
multiplied by powers of appropriate operations.

ti

ti1 ti3 ti4

Figure 4.1: JSSP without energy limits

Formal representation

Each operation ok is represented by two ways. The first way is an interval
variable tk. The length of tk is the processing time of the operation ok,
i.e., length(tk) = pk. The second way is a set of optional interval variables
optk = {tk1, tk2, , ...tk|Ω|}, ok ∈ O, which represents overlap between operation
ok and metering intervals ωe ∈ Ω.
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....................................4.1. Exact methods

Constraints:

length(tke) ≤ D, tke ∈ optk, ok ∈ O (4.1)

EndMax(tk) 6 H, ok ∈ O (4.2)

StartMin(tke) ≥ D · (e− 1), ok ∈ O,ωe ∈ Ω (4.3)

EndMax(tke) ≤ D · e, ok ∈ O,ωe ∈ Ω (4.4)
∑

ωe∈Ω
tke = tk, ok ∈ O (4.5)

Span(tk, {tk0, tk1, , ...t|Ω|}), ok ∈ O (4.6)

end(tk′) ≤ start(tk), ok′ = predjk, k = 1...o+ 1 (4.7)

NoOverlap(tk, tk′), ok ∈ Lh, ok′ ∈ Lh, h ∈M (4.8)
∑

ok∈O

(tke · Pk) ≤ Emax, ωe ∈ Ω (4.9)

end(tk) ≤ Cmax, ok ∈ O (4.10)

Objective function:

min(Cmax) (4.11)

Equation 4.2 ensures that each operation must be processed during horizon.
Optional interval variable tke must start after the beginning of the metering
interval ωe and must finish before ending the metering interval ωe, equations
4.3 and 4.4. Sum of lengths of optional interval variables which corresponds tk
and length of tk must be equal, equation 4.5. Interval variable tk must starts
with appearance the first optional interval variable which belongs to it and
must end with the last one, equation 4.6. Operations, which correspond to a
same job must create a chain, equation 4.7. Operations, which are processed
a same machine can’t overlap each other, equation 4.8. Energy consumption
in each metering interval ωe ∈ Ω must be less or equal to Emax, equation 4.9.
Makespan is equal to the maximum completion time, equation 4.10.

19 ctuthesis t1606152353



4. Algorithms for JSSP with energy limits .........................
4.1.2 Overlap

In this method operations and metering intervals are represented by interval
variables. In contrast to the previous method all operations have common
variables, which represent metering intervals, and are represented only one
way. It connected with the CP Optimizer that has function Overlap(ti, tj),
which calculates an intersection between two interval variables ti and tj .
The length of the interval variable, which corresponds to the operation, is
processing time. The length of interval variable, which corresponds to a
metering interval ωe ∈ Ω, is D.

Energy consumption for a metering interval is sum intersection operations
with this metering interval multiplied by powers the correspond operations.
Constraints, which are responsible for the operations sequence in jobs and on
machines are same as in the previous method.

Formal representation

Let each operation ok be represented by interval variable tk, where the length
of tk is processing time. Each metering interval ωe ∈ Ω has length D and is
represented by interval variable ωe.

Constrains:

start(ωe+1) = end(ωe), ωe ∈ Ω \
{
H

D

}
(4.12)

start(ω1) = 0 (4.13)

end(tk′) ≤ start(tk), ok′ = predjk, k = 1...o+ 1 (4.14)

NoOverlap(tk, tk′), ok ∈ Lh, ok′ ∈ Lh, h ∈M (4.15)∑
ok∈O

(Overlap(tk, ωe) · Pk) ≤ Emax, ωe ∈ Ω (4.16)

end(tk) ≤ Cmax, ok ∈ O (4.17)

Objective function:
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min(Cmax) (4.18)

Metering intervals start one after one. The first metering interval starts at
time t = 0, equations 4.12,4.13. Operations, which correspond to a same job
must create a chain, equation 4.14. Operations, which are processing on a
same machine can’t overlap each other, equation 4.15. Energy consumption in
each metering interval must be less or equal to Emax, equation 4.16. Makespan
is equal to the maximum completion time, equation 4.17.

4.2 Heuristic methods

The heart of the algorithm is the Taboo Search/Path Relinking algorithm from
[PLC14]. This algorithm combines Taboo Search algorithm and Relinking
procedure.

At the start, the algorithm generates the population, which is a set of
the random feasible solutions. After the solutions in the population will be
optimized with the Taboo Search with small iteration count. In each iteration,
the algorithm samples two random solutions from the population and applies
to them the Relinking procedure, which returns two new possibly high-quality
solutions Sp+1 and Sp+2. The main algorithm adds these solutions to the
population. At the end of the iteration, the worst solutions will be deleted
from the population to keep it constant size.

Taboo Search/Path Relinking algorithm is described by Algorithm 1. The
SlightTabooSearch(Si) function is described in section 4.2.2.

4.2.1 Population initialization

Procedure PopulationInitialization generates a population of the random
feasible solutions. Solutions in the population don’t duplicate each other.

Procedure Repair(S), which is used to convert a random solution to
a feasible solution is described in [dejW17]. The procedure repairs job
precedences between operations. The procedure uses a set of unscheduled
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Algorithm 1 Taboo search/path relinking algorithm

1: function TabooSearchPathRelinking(J , M)
2: P = {S1, S2, ...Sp} := PopulationInitialization()
3: for i = 1, ..., p do
4: Si := SlightTabooSearch(Si)
5: end for
6: S∗ := argmin(f(Si)|i = 1, ...p)
7: while (Time Limit is not reached) do
8: Randomly select S1, S2 from P
9: Sp+1 := PathRelinking(S1, S2)

10: Sp+2 := PathRelinking(S2, S1)
11: if Sp+1 (or Sp+2) is better than S∗ then
12: S∗ := Sp+1 (or Sp+2)
13: end if
14: if Sp+1 /∈ P then
15: P := P

⋃
Sp+1

16: Identify a worst solution Sw ∈ P
17: P := P \ Sw

18: end if
19: if Sp+2 /∈ P then
20: P := P

⋃
Sp+2

21: Identify a worst solution Sw ∈ P
22: P := P \ Sw

23: end if
24: end while

return S∗
25: end function

operations that were not added to the feasible solution but were removed from
the infeasible solution. In each iteration, the procedure selects an operation
from the unscheduled set and operations from the infeasible solution, for
which the machine predecessor was removed from the infeasible solution, and
checks if adding the operation to the feasible solution will not be violated job
precedences in the feasible solution. If exists any operation, which satisfies
this demand, the procedure adds this operation to the feasible solution and
removes it from infeasible solution or unscheduled set. If no operation from
the infeasible solution or the unscheduled set was added, the procedure moves
all operations from infeasible solution to unscheduled set, for which machine
predecessors were removed, and will begin a new iteration.
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.................................. 4.2. Heuristic methods

4.2.2 Taboo search procedure

The Taboo Search procedure is described in [ZLGR06]. The Taboo Search
procedure gets the initial solution from the algorithm 1 and the algorithm 5.

In each iteration, the Taboo Search generates new neighbors around the
seed using a neighborhood structure and selects the best neighbor. If the
best neighbor is better than the best-known solution, then this neighbor will
become the best-known solution with respect to the makespan and new seed.
Otherwise, the new seed will be the best neighbor which is not in the taboo
list. The new seed will be added to the taboo list. At the end of the iteration,
the algorithm removes the oldest solution from the taboo list. Figure 4.2
shows the flowchart of the Taboo Search procedure. Section 4.2.4 describes
how to calculate the makespan for the fixed order of the operations on the
machines with respect to energy limits.

The Taboo Search stops after iterating for the given number of iteration.
In addition, if the solution not been improved after the maximum number
of the disimproving iterations the procedure will stop. For the functions
SlightTabooSearch(Si) and StrongTabooSearch(Si) these criteria are de-
scribed in table 4.1. The smallest length of the taboo list is L = 10 + n/m.
If n ≤ 2 ·m then the taboo set length is Lts = 1.4 · L otherwise Lts = 1.5 · L.

Iteration count for slight Taboo search 50
Iteration count for strong Taboo search 1250
The maximum number of the disimproving iterations 300

Table 4.1: Taboo Search parameters

4.2.3 Neighborhood structure

A neighborhood structure describes a mechanism for effective generating new
solutions around current solution. This structure is very important because
it influences on effective of the Taboo Search procedure. A neighborhood
structure must prevent generation of unnecessary or infeasible solutions if it
is possible.

To generate better solutions operations on the critical path need be swapped
because the critical path represents makespan. If operations that don’t belong
to the critical path are swapped, makespan can’t be decreased. One of the
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Generate an initial solution

current seed=initial solution

taboo list=empty

Is stop criterion satisfied?

Generate neighbors of the current seed solution

best solution=initial solution

seed= the best neighbor

The best solution=the best neighbor

Return the best solution

Y

N

Y

N

Select the best solution in neighborhood that

is not in the taboo list

Is the best neighbor better than

the best solution?

Update the taboo list

Figure 4.2: Taboo search algorithm

neighborhood structure that swaps operation on the critical path is N5 from
[ZLGR06]. This structure swaps the operations, which belong to the critical
path, therefore, has good efficiency.

At the start, the algorithm finds a critical path in the current solution.
After this, the algorithm selects a critical block, which is a maximal sequence
of adjacent critical operations that are processed on the same machine. In
the selected block algorithm swaps operations as described in figure 4.3.

For define the critical path is used the algorithm 2. A critical block is
chosen randomly.
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Critical block

swapping first two operations swapping last two operations

Figure 4.3: N5 neighborhood structure

Critical path calculation

The JSSP with energy limits can also be represented as a disjunctive graph,
but for this problem, the sum of processing time of the operations, which
belong to the critical path, isn’t equal to makespan, because the length of arcs
not only depends on processing time. To satisfying the energy constraints,
start time of some operations may increase.

The algorithm starts work from the dummy operation o+ 1 and adds to
the critical path the closest previous operation until it gets operation 0. The
start time of the operations must be known.

Figure 4.4 shows the critical path in the conjunctive-disjunctive graph with
energy limits. As can be seen for the edge (2, 3) the start time of operation
o3 a is not equal to max(spredj3 + ppredj3 , spredm3 + ppredm3) as in the example
without energy limits from table 2.1. In this case, s3 was increased to satisfy
energy demand. The start time of the operation o9 also was increased, which
also connected with energy constraints.

1 2 3

4 5 6

7 8 9

Machine 1

Machine 2

Machine 3

0 10
186

0

50

1760

50

16410

83

143

50 30

60

40 10 20

20 20

10

50

10

30

60

20

40

Figure 4.4: Example with energy limits
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Algorithm 2 Finding critical path for solution with energy limits

1: function CriticalPath(O)
2: CP := ∅
3: CP := CP

⋃
(o+ 1)

4: ok := any operation ok ∈ O such that sk + pk = so+1
5: CP := CP

⋃
ok

6: while ok 6= 0 do
7: if sk − (spredjk

+ ppredjk
) < sk − (spredmk

+ ppredmk
) then

8: ok = predjk
9: else

10: ok = predmk

11: end if
12: CP := CP

⋃
ok

13: end while
return CP

14: end function

4.2.4 Makespan calculation with energy limits for fixed order

Problem complexity

For JSSP without energy limits the makespan calculation with fixed ordering
ot the operations on machines is a polynomial problem, whereas for JSSP
with energy limits isn’t. To prove this statement, we use the theorem that
the problem U is strongly NP-hard if some strongly NP-hard problem V
polynomialy reduces on U .

Theorem 1. The makespan calculation with energy limits and fixed ordering
on machines is strongly NP-hard.

Proof. To prove this theorem, we perform a polynomial reduction from 3-
Partition decision problem to the Makespan calculation with energy limits
for fixed order problem (MCELFOP).

Let A be a set of 3 · l integers a1, a2, ....a3·l. Let B be a positive number
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such that:

∀i ∈ 1, 2...3 · l : B4 < ai <
B

2 (4.19a)∑
ai∈A

ai = l ·B (4.19b)

The 3-Partition decision problem is to determinate if A can be partition
into l disjunction subsets Ai, which consist of 3 elements and sum of these
elements for all subsets is B, i.e.,

∑
ai∈Aj

ai = B, j ∈ {1, 2, ...l}.

Now we describe how to represent 3-Partition decision problem as MCELFOP.
Let we have 3 · l machines. For each number ai we create job ji which consists
of one operation, having processing time of 1 and power consumption of
ai and this job must be processed on the machine hi. Number of jobs and
machines is 3 · l. Let D = 1 and for even metering intervals Eeven

max = B and
for odd metering intervals Eodd

max = 0. The number of metering intervals is
2 ·D · l.

The answer of 3-Partition decision problem is Y ES-instance if and only if
for the scheduling instance above exists a schedule for which the makespan is
2 ·D · l.

3-Partition decision problem ⇒MCELFOP. For each subset Ai from
Y ES-instances of 3-Partition decision problem, select the metering interval
with number 2 · i and for the operations which correspond to numbers from
Ai, set start time to 2 · D · i − 1. Sum of energy consumption in all even
metering intervals is B, since

∑
ai∈A ai = B, for odd metering intervals is 0.

Maximum completion time for the operation from the last subset is 2 ·D · l.

3-Partition decision problem ⇐ MCELFOP. Notice, that that op-
erations can’t overlap with odd metering intervals, because Eodd

max = 0. In
the proof we use notation Oωe to denote the set of the operations, that are
contained in metering interval ωe.

Now we show, that every odd metering interval contains exactly 3 operations
and we will prove this by contradiction. Assume, that there exists a metering
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interval ωe such that |Oωe | ≥ 4. Then:

∑
oj∈Oωe

Pj
4.19a
> |Oωe | ·

B

4
|Oωe |≥4
≥ 4 · B4 = B (4.20a)

However, equation 4.20a is a contradiction with feasibility of the schedule
with respect to the energy limits. Therefore, |Oωe | < 4 for all metering
intervals.

Suppose, that some even metering interval ωe has |Oωe | ≤ 2, then:

|J | = |Oωe |+
∑

ω∈Ω\ωe

|Oω| ≤ 2 + 3 · (l − 1) = 3 · l − 1 < 3 · l = |J | (4.21a)

|J | < |J | (4.21b)

Equation 4.21b is contradiction, therefore each even metering interval must
have 3 operation.

For each metering interval ω2·i from Y ES-instance from MCELFOP create
subset Ai = {Pj : oj ∈ Oω2·i}. For all subsets Ai sum of elements is B and
number of Ai subsets is l. Figure 4.5 illustrates the reduction.

M1

M2

M3·l

.

.

.

a1

a2

0 B 0 B . .. . 0 B

a3·l

Cmax = 2 ·D · l

Energy

consumption

Figure 4.5: 3 Partition problem reduction

This work provides exact and heuristic approaches for solving MCELFOP
because this is NP-hard problem. The approaches are described below.
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Exact makespan calculation with energy limits for fixed order

The exact way uses the modification of the exact method from section 4.1.2.
The following constraint sets fixed ordering on machines and is added to the
Overlap method:

end(tk′) ≤ start(tk), ok′ = predmk, ok ∈ O, o′k ∈ O (4.22)

Heuristic makespan calculation with energy limits for fixed order

Algorithm 3 schedules the operations from the first metering interval. In
each iteration, heuristic creates a set of the operations, for which job and
machine predecessors were scheduled. From this set, the algorithm selects the
operation, which can be scheduled in the current metering interval and has a
maximum rank, where rank represents operation priority (will be describe
later). Algorithm schedules selected operation as early as possible. If doesn’t
exist any operation, which can be scheduled in the current metering interval,
the algorithm selects the next one. The process stops when all operations
will be scheduled.

Algorithm 3 describes the heuristic way for calculating schedule with
considering energy limits. The heuristic starts from the metering interval
ω1 ∈ Ω. For the current metering interval ωe ∈ Ω, the algorithm creates
subset O′ ⊂ O, which consists of the operations, for which job and machine
predecessors were scheduled. For all of the operation o′k ∈ O′ heuristic tries
to schedule o′k (this is computed by the algorithm 4, which is described
below) in the current metering interval ωe. Also for all operations o′k ∈ O′
algorithm calculates the rank of the operation ok. For scheduling, heuristic
selects an operation o′k ∈ O′, which can be scheduled in the current metering
interval ωe and has the maximum rank. If no operation exists, which has
these specified properties, the algorithm selects the next metering interval
ωe+1. This heuristic works while there exists any operation, which was not
scheduled.

The rank of an operation ok ∈ j, ok ∈ Lh can be calculated two ways. In
the first way, the rank is maximum between a sum of processing time of
the operations which are processed on machine h after the operation ok and
a sum of processing time of the operations which are belong to job j and
processed after the operation ok. This way is called the Remaining Work
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rank. In the second way, the rank is the longest path between operations ok

and o+ 1 in the disjunctive graph from the section 2.1.1. This way is called
the Longest Path rank.

The algorithm 4 calculates the minimum start time s′k of the operation
o′k ∈ O′. At the start, it sets s′k in maximum between the end of machine and
job predecessors. After this algorithm finds the maximum overlap between
operation o′k ∈ O′ and the current metering interval ωe ∈ Ω. By this
information, heuristic finds the final start time s′k. After schedule function,
CheckEnengy controls the energy constraints on the remaining metering
intervals with which operation o′k overlaps. The result s′k =∝ means, that
operation o′k can’t be scheduled in the current metering interval ωe and
algorithm will try to schedule this operation on the next metering intervals.

After selecting the new scheduled operation o′k ∈ O′, heuristic sets it
start time s′k, recalculates energy for all metering intervals with which o′k
overlaps and adds it to set R, which consists of the scheduled operations. The
algorithm stops when all operations from the set O will be scheduled.

The algorithm was inspired from [MvH17].

4.2.5 Relinking procedure

The Relinking procedure [PLC14] is used to helps the Taboo search to escape
from local optimum.

For two randomly selected solutions Si and Sg from the population, the
Relinking procedure generates a PathSet which connects them. At the start,
the algorithm creates a set NCS(Si, Sg), which consists of all operations
having different positions on machines in solutions Si and Sg. To create
PathSet, the Relinking procedure selects random operation ok ∈ NCS(Si, Sg)
and swaps it with an operation ok′ ∈ NCS(Si, Sg) so that after swapping in
solution Si operation ok will be on the same position in both solutions. The
new solution is added to the PathSet. Function Dis(Si, Sg) returns number
of the operations which have different places in Si and Sg. After creating
PathSet algorithm improves all solution with Taboo search from it.

However, is not efficient to improve all solutions from the PathSet, because
close solutions differing in a few number of swaps will lead to the same local
optimum. Instead, it is better to add solutions to the PathSet only after

ctuthesis t1606152353 30



.................................. 4.2. Heuristic methods

Algorithm 3 Heuristic Makespan calculation for fixed order
1: function HeuristicMakespanCalculationForTheFixe-

dOrder(Emax,O,P )
2: E := [E1

max, E
2
max, ...E

H/D
max ]

3: ωe := 1
4: R := ∅
5: while R 6= O\{o+ 1} do
6: repeat
7: rank := 0
8: ok := ∅
9: sk := ∅

10: construct O′
11: for o′k ∈ O′ do
12: s′k := CalculateStartT ime(o′k, Pk, E, ωe, D)
13: rank′ := CalcOperationRank(o′k, sk)
14: if (s′k 6=∝) AND (rank′ > rank) then
15: rank := rank′

16: ok := o′k
17: sk := s′k
18: end if
19: end for
20: if ok 6= ∅ then
21: SetOperationStartT ime(ok, sk)
22: RecalculateEnergy(ok, sk, E)
23: R = R

⋃
ok

24: end if
25: until (Ee = 0) OR (ok = ∅)
26: ωe := ωe + 1
27: end while
28: so+1 = maxok∈O(sk + pk)

return maxok∈O(sk + pk)
29: end function

performing some number of swaps. Therefore, we construct the PathSet as
follows: between the first added solution to the PathSet and Si must be α
swaps, between solutions in the PathSet must be β swaps, between the last
added solution in the PathSet and the Sg must be at least α swaps. The
solutions, which were added to PathSet, call Candidate solutions, the remain
solutions call Intermediate solutions. Figure 4.6 illustrates this approach.
Parameters α and β is given in table 4.2. The Relinking procedure is described
by algorithm 5.
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Algorithm 4 Calculate start time

1: function CalculateStartTime(ok, Pk E, ωe, D)
2: sk =: max(spredjk

+ ppredjk
, spredmk

+ ppredmk
)

3: overlap := min(pk, D,
Ee
Pk

)
4: if (sk ≤ ωe ·D)AND(overlap > 0) then
5: if overlap = pk then
6: soverlap := ωe ·D −D
7: else
8: soverlap := ωe ·D − overlap
9: end if

10: sk = max(sk, soverlap)
11: if CheckEnergy(ok, sk, E) = FALSE then
12: sk :=∝
13: end if
14: else
15: sk :=∝
16: end if

return sk

17: end function

...

α αβ β...

Si
Sg

Intermediate solution Candidate solution

Figure 4.6: Relinking procedure

α
(|NCS(Si,Sg)|)

5
β max( |NCS(Si,Sg)|

10 , 2)

Table 4.2: Parameters of the Relinking procedure
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Algorithm 5 Relinking procedure
1: function PathRelinking(Si, Sg)
2: Generate the NCS(Si, Sg) set
3: PathSet := ∅
4: for k = 1...α do
5: Randomly select an operation ok ∈ NCS(Si, Sg)
6: Swap the operation ok and an operation ok′ in Si so that position

of ok in Si is the same as in Sg

7: NCS(Si, Sg) := NCS(Si, Sg) \ ok

8: end for
9: PathSet := PathSet

⋃
Si

10: while Dis(Si, Sg) > α do
11: for k = 1...β do
12: Randomly select an operation ok ∈ NCS(Si, Sg)
13: Swap the operation ok and an operation ok′ in Si so that

position of ok in Si is the same as in Sg

14: NCS(Si, Sg) := NCS(Si, Sg) \ ok

15: end for
16: PathSet := PathSet

⋃
Si

17: end while
18: for Sj ∈ PathSet do
19: if Sj is infeasible then
20: Repair(Sj)
21: end if
22: Sj := SlightTabooSearch(Sj)
23: end for
24: Sr := argmin{f(Sj), Sj ∈ PathSet}
25: Sr := StrongTabooSearch(Sr)

return Sr

26: end function
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Chapter 5

Experiments

This chapter compares exact methods from section 4.1 and heuristic meth-
ods from section 4.2. The first part of the chapter describes how the test
instances were generated and the second part compares exact methods on
small instances. At the last part the best exact method is compared against
the heuristic methods with the following modifications:..1. for Makespan calculation with energy limits for fixed order is used the

heuristic method from section 4.2.4..a. method uses the Remaining Work ranking function from section
4.2.4. Method is noted HM-RW...b. method uses the Longest Path ranking function from section 4.2.4.
Method is noted HM-LP...2. for Makespan calculation with energy limits for fixed order is used the

exact method from section 4.2.4:..a. for horizon calculation is used the heuristic method with the Re-
maining Work ranking function from section 4.2.4. Method is noted
EM-RW...b. for horizon calculation is used the heuristic method with the Longest
Path ranking function from section 4.2.4. Method is noted EM-LP.

Exact methods notification:
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5. Experiments .......................................1. the Optional Variables method from section 4.1.1 is noted OPTIONAL..2. the Overlap method from section 4.1.2 is noted OVERLAP

The algorithms were written in C++, and the experiments were running
on PC with Intel Xeon CPU E5-2620 v2 2.10 GHz and 64 GB RAM under
the Gentoo operating system.

5.1 Generating test instances

To generate the test instances, we extended the standard benchmark instances
from literature with energy limits. The following benchmarks were considered:..1. TA instances due to Taillard [vH]..2. SWV instances due to Storer [vH]..3. LA instances due to Lawrence [vH]..4. FT instances due to Fisher and Thompson [vH]..5. ORB instances due to Applegate and Cook [vH]

However, the energy limit was set to be same for all instances.

To generate the power consumption, we use two parameters α and β,
which represent the lower bound and the upper bound of power consumption.
The power consumption of the operations are then sampled from continuous
uniform distribution, equation 5.1. Constraint 5.2 ensures that any operation
for a metering interval doesn’t consume more energy, than energy limit,
equation 5.2.

U

[
α · Emax

m ·D
,
2 · Emax

m ·D

]
, α 6 β, α = 1, 1.2...2 (5.1)

min(pi, D) · Pi ≤ Emax (5.2)
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For each instance were generated 5 random instances with same the α and
β. After each instance according to its number is added to the separate sets,
which call Generation.

5.2 Experiments with the exact methods

This section compares two exact algorithms described in section 4.1. To
implement the methods, was chosen IBM CP Optimizer. The experiment was
carried out in the following instances: FT 06 of 6× 6 and ORB 07 of 10× 10.

Tables 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 represent experiment
results for instances, which were generated from FT06 and ORB07.

If the cell in the Objective column is highlighted in green, it means that
method found the optimal solution and proved its optimality during the time
limit of 3600 s. The red color indicates that the method didn’t prove, that
found solution is the optimal one.

Tables 5.1 and 5.2 show how horizon influences on the number of variables
and constraints for two methods. As can be seen, the OPTIONAL method
needs more variables and constraints than OVERLAP method, which has an
impact on the efficiency of the methods.

Method H = 100 H 200
Variables Constraints Variables Constraints

OPTIONAL 258 114 510 121
OVERLAP 50 43 57 50

Table 5.1: Horizon influence for FT 06

Method H = 100 H = 200
Variables Constraints Variables Constraints

OPTIONAL 710 306 1410 313
OVERLAP 118 107 125 114

Table 5.2: Horizon influence for ORB 07
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α OPTIONAL OVERLAP

Time [s] Objective Time [s] Objective
1 0.808 55 0.149 55
1.2 0.822 57 0.682 57
1.4 2.57 58 1.539 58
1.6 0.739 59 2.86 59
1.8 0.76 62 1.455 62
2 9.903 65 0.534 65

Table 5.3: Instance FT 06 Generation 1

α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 0.744 56 0.633 56
1.2 1.177 56 2.805 56
1.4 1.434 59 0.647 59
1.6 0.817 59 3.024 59
1.8 0.757 63 0.35 63
2 0.756 65 0.719 65

Table 5.4: Instance FT 06 Generation 2

α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 0.841 56 0.45 56
1.2 0.821 56 0.451 56
1.4 0.777 58 1.487 58
1.6 0.758 59 3.509 59
1.8 0.789 63 0.266 63
2 0.757 65 0.712 65

Table 5.5: Instance FT 06 Generation 3

α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 0.838 55 0.263 55
1.2 0.748 57 0.657 57
1.4 1.335 58 0.692 58
1.6 0.736 59 3.477 59
1.8 27.25 62 2.976 62
2 0.773 65 0.711 65

Table 5.6: Instance FT 06 Generation 4
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α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 0.852 55 0.16 55
1.2 0.847 56 0.214 56
1.4 1.737 59 1.706 59
1.6 1.142 59 4.168 59
1.8 0.782 62 1.477 62
2 0.763 65 0.707 65

Table 5.7: Instance FT 06 Generation 5

α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 220.8 401 31.94 401
1.2 205.9 401 39.66 401
1.4 82.7 418 342.4 414
1.6 2319 436 2222 435
1.8 546 457 960.2 456
2 49.3 485 7.08 485

Table 5.8: Instance ORB 07 Generation 1

α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 100.9 403 26.39 403
1.2 3036 403 45.01 403
1.4 3443 419 257.5 415
1.6 35.51 435 1667 432
1.8 182.5 458 215.2 456
2 50.75 485 7.17 485

Table 5.9: Instance ORB 07 Generation 2

α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 622 403 9.377 403
1.2 69.44 409 172.5 407
1.4 2485 412 2040 411
1.6 1107 444 265.9 442
1.8 62.87 459 31.96 458
2 48.6 485 7.08 485

Table 5.10: Instance ORB 07 Generation 3
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α OPTIONAL OVERLAP

Time [s] Objective Time [s] Objective
1 68.19 401 32.41 401
1.2 480.2 402 10.45 402
1.4 246.4 419 320.2 416
1.6 60.78 439 89.41 438
1.8 464.1 358 271.3 458
2 49.8 485 7.228 485

Table 5.11: Instance ORB 07 Generation 4

α OPTIONAL OVERLAP
Time [s] Objective Time [s] Objective

1 287.6 401 31.68 401
1.2 2735 405 63.9 404
1.4 246.7 420 19.94 418
1.6 3270 437 637.2 437
1.8 64.83 462 15.63 461
2 48.79 485 7.166 485

Table 5.12: Instance ORB 07 Generation 5

5.3 Analysis of the experiments with the exact
methods

Tables 5.1 and 5.2 show that the OPTIONAL method it slower because it
has more number of variables and constraints than the OVERLAP method.
Therefore, in the most case, the OVERLAP method is faster.

The experiments show that for small instances the OPTIONAL and OVER-
LAP methods work similarly, but for the bigger instances, the OPTIONAL
method is slower than the OVERLAP method in 75% of cases.

5.4 Experiments with the heuristic methods

This section compares the OVERLAP method against the heuristic methods.
Because on the large and medium instances the OVERLAP method can’t
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find the optimal solution in the reasonable time the OVERLAP method is
considered as the heuristic method.

Exact makespan calculation for fixed order was implemented with the IBM
CP Optimizer. Horizon for the OVERLAP method was calculated as average
makespan of 100 random generated solutions. The horizon for this solution
was calculated by Remaining Work ranking function from section 4.2.4.

For experiments the next instances were selected:..1. the small instances..a. FT 06, size 6× 6, the horizon for the Overlap method is 100..2. the medium instances..a. LA 01 and LA 05, size 10× 5, the horizon for the Overlap method
is 1600..b. SWV 06 and SWV 10, size 20 × 15, the horizon for the Overlap
method is 8000..c. LA 31 and LA 35, size 30× 10, the horizon for the Overlap method
is 7500..3. the large instances..a. TA 41 and TA 49, size 30× 20, the horizon for the Overlap method
is 15000..b. TA 51 and TA 57, size 50× 15, the horizon for the Overlap method
is 17500

For all instances, 5 instances with the same α and β were generated. All
methods have the time limit of 600 s.

The OVERLAP method was able to prove optimality within the time limit
only for some instances generated from FT 06; for all other instances were
not proven optimal.

The table 5.13 shows the average objective and standard deviation for the
small and medium instances. The table 5.14 shows average time, when the
best solution was found, and standard deviation for the small and medium
instances.
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For the large instances, the Overlap method in the most case didn’t find

any solution. The tables 5.15 and 5.16 show the average objective value and
average time when the best solution was found. Table 5.17 shows how many
solutions the Overlap method found during the time limit. Table 5.18 shows
results for the large instances for which the Overlap method found a solution.

In tables 5.13, 5.14, 5.15, 5.16 the average objective and standard deviation
were calculated for all Generations, α and β.

The figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 illustrate the convergence to the best
solution for all type of instances with α = 2, β = 2. The points on the figures
represent found solutions. As can be seen, for the medium and large instance
EM-RW and EM-LP methods find only one solution during the run, because
these methods didn’t have time to initialize the population.

Instance OVERLAP HM-RW HM-LP EM-RW EM-LP
ft06 59.23± 3.501 59.91± 3.085 59.47± 3.389 59.38± 3.407 59.29± 3.462
la01 1035± 131.8 1035± 126.8 1031± 127.4 1056± 137.5 1056± 137.7
la05 815.9± 96.18 815.6± 93.94 811.8± 92.6 823± 111.6 831.2± 103.5
swv06 1976± 103.5 2009± 75.58 1983± 66.62 4637± 201.2 4541± 231.9
swv10 2057± 83.48 2073± 79.1 2044± 71.46 4746± 230.9 4759± 226.5
la31 2639± 272.5 2651± 268.7 2642± 269.8 4724± 298.2 4725± 260.4
la35 2695± 274.4 2704± 272.5 2695± 274.7 4885± 245.4 4917± 193.5

Table 5.13: The objectives of the OVERLAP and the heuristic methods for
small and medium instances

Instance OVERLAP [s] HM-RW [s] HM-LP [s] EM-RW [s] EM-LP [s]
ft06 6.156± 4.293 3.497± 13.09 0.9041± 1.392 201.4± 194.3 187.6± 178.9
la01 240.5± 176.3 300.5± 154.9 310.1± 158.6 593.4± 28.71 596.7± 8.041
la05 278± 164.9 253.8± 156.6 306.7± 162.7 580.8± 83.16 594± 28.86
swv06 587.5± 12.6 560.2± 42.47 568.6± 34.14 598.4± 1.212 598.4± 1.199
swv10 591.8± 10.92 556.4± 40.61 562± 39.2 598.7± 1.346 598.3± 1.606
la31 324.6± 193.4 405.8± 123.1 362.4± 147.2 598.1± 1.732 597.7± 1.718
la35 497.5± 108.5 422.2± 110.3 343.2± 158.2 598± 1.736 598.1± 1.614

Table 5.14: The time of the OVERLAP and the heuristic methods for small
and medium instances

Instance HM-RW HM-LP EM-RW EM-LP
ta41 2759± 234.5 2707± 249.5 13311± 466.3 13226± 536.1
ta49 2647± 213.9 2590± 223.1 12562± 477.9 12518± 495
ta51 4412± 438.3 4358± 451.4 16344± 486 16275± 528.2
ta57 4458± 447.6 4418± 456.3 16631± 457.2 16724± 466.9

Table 5.15: The objectives of the heuristic methods for large instances
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Instance HM-RW [s] HM-LP [s] EM-RW [s] EM-LP [s]
ta41 542.1± 54.96 486.1± 104.9 598± 1.83 598.3± 1.792
ta49 540.9± 58.25 517.4± 86.82 597.9± 1.6 597.9± 1.768
ta51 540± 59.81 454.5± 114 598.2± 1.865 597.5± 1.856
ta57 528.2± 59.87 461.5± 98.66 598± 1.841 598± 1.798

Table 5.16: The time of the heuristic methods for large instances

ta41 ta49 ta51 ta59
Count found solutions (%) 33 23 0 0

Table 5.17: The number of solutions obtained the OVERLAP method for the
large instances

Instance Generation α OVERLAP HM-RW HM-LP EM-RW EM-LP
ta41 0 1.8 3013 2957 2921 13296 13227
ta41 0 2 3146 3134 3110 13641 13490
ta41 1 1.8 2999 2954 2926 13035 13120
ta41 1 2 3146 3138 3110 13849 13237
ta41 2 1.8 3003 2963 2921 13451 13027
ta41 2 2 3146 3132 3111 13187 13492
ta41 3 1.8 2994 2945 2917 13157 13105
ta41 3 2 3146 3142 3111 13011 13016
ta41 4 1.8 2990 2959 2919 13159 13195
ta41 4 2 3146 3132 3110 13329 13577
ta49 0 2 3018 2985 2957 12399 12481
ta49 1 2 3018 2995 2958 12695 12169
ta49 2 2 3018 2986 2957 12920 12535
ta49 3 1.8 2872 2827 2780 12296 12070
ta49 3 2 3018 2991 2958 13116 13095
ta49 4 1.8 2872 2829 2777 13225 12560
ta49 4 2 3018 2984 2958 12560 12887

Table 5.18: The objective of the Overlap and the heuristic methods for large
instances, where the Overlap method obtained the solution
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Figure 5.1: LA 01, α = 2, β = 2
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Figure 5.2: LA 05, α = 2, β = 2

ctuthesis t1606152353 44



......................... 5.4. Experiments with the heuristic methods

0 100 200 300 400 500 600
Time, s

1500

2000

2500

3000

3500

4000

4500

5000

M
a
ke

sp
a
n

OVERLAP
HM-RW
HM-LP
EM-RW
EM-LP

Figure 5.3: SWV 06, α = 2, β = 2
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Figure 5.4: SWV 10, α = 2, β = 2
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Figure 5.5: TA 41, α = 2, β = 2
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Figure 5.6: TA 49, α = 2, β = 2
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5.5 Analysis of the heuristic methods

5.5.1 Comparison of the heuristic methods

As can be seen, from tables 5.13 and 5.15 the best heuristic method is the
HM-LP method. It has the best objectives among all heuristic methods
because HM-LP method has the more accurate suggestion (i.e., rank), which
operation is more critical when algorithm calculates makespan for fixed order.

EM-RW method and EM-LP method found worse solutions than HM-LP
method, which don’t use IBM CP Optimizer, because makespan calculation
is strongly NP-hard and IBM CP Optimizer can’t find the exact solution for
fixed order during the reasonable time.

5.5.2 Comparison of the best heuristic and the best exact
method

OVERLAP method and HM-LP method have almost the same results on
the small and medium instances. As can be seen, from table 5.17 for the
large instances OVERLAP method in the most case can’t find any solution
since large instances have a large horizon for which IBM CP Optimizer solver
generates larger model. For the remaining large instances, OVERLAP method
found the solutions, which are worse by 2%, than the HM-LP method.

HM-LP method and HM-RW method need less memory, than OVERLAP
method. Thus heuristic methods can run for the large instances on a common
customer computer. For TA instances, OVERLAP method needs about 20
GB RAM, whereas HM-LP method needs only about 30 MB RAM.
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Chapter 6

Conclusion

This master thesis deals with the Job Shop Scheduling problem (JSSP) with
energy limits, which is NP-hard. The energy limits constraint the total
energy consumption of the machines within the so-called metering intervals.
The motivation for solving this problem is that the JSSP is important for
manufacturing where the energy limits are contracted with the energy system.
The manufacturing company are financially penalized if they violate the
contracted energy limits since overconsumption leads to instability of the
electrical grid.

The literature review shows that very few articles exist which consider
scheduling together with energy limits. Existing articles consider scheduling
with the energy limits on the fewer fixed number of machines.

In this master thesis, we created two exact and four heuristic methods.
The exact methods are fully our contribution. For implementation, these
methods we used IBM CP Optimizer. The presented heuristic methods are
the extension of the existing approaches by the energy limits. Specially, we
designed a procedure that, given a fixed-operation ordering on the machines,
finds start times of the operation that don’t violate the energy limits. More-
over, we proved that finding the optimal start times that don’t violate energy
limits for the fixed operation ordering on the machines is NP-hard.

During the experiments methods were tested and benchmarked. The largest
instances, which were used in the experiments, have size 50× 15, where 50
is number of jobs, 15 number of machines. The experiments show that even
for small instances JSSP with energy limits is very hard. Any exact method
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6. Conclusion......................................
didn’t find the optimal solutions for all small instances, which were tested.
The experiments suggest that the OVERLAP method is more efficient than
the OPTIONAL method.

Moreover, we compared heuristic methods and the OVERLAP method.
The experiments show that the best heuristic method is the HM-LP method.
For the large instances, the OVERLAP method can’t find any solutions
and needs a lot of memory, whereas the HM-LP method doesn’t need a lot
of memory and finds better solutions. Unlike the OVERLAP method, the
HM-LP method doesn’t need IBM CP Optimizer, which is the advantage of
the HM-LP method. Therefore, the best method for the solving JSSP with
energy limits providing by this work is the HM-LP method.
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Appendix A

Conten of the CD

Figure A.1 represents CD structure. Folder PDF document contains the-
sis document and specification. Thesis document source code is in Latex
document folder.

Figure A.1: Disk structure

Folder instances contains instance examples. Input instance format:

n m Emax H
mu0,0 p0,0 P0,0 mu0,1 p0,1 P0,1 ... mu0,m−1 p0,m−1 P0,m−1
mu1,0 p1,0 P1,0 mu1,1 p1,1 P1,1 ... mu1,m−1 p1,m−1 P1,m−1
...
mun−1,0 pn−1,0 Pn−1,0 mun−1,1 pn−1,1 Pn−1,1 ... mun−1,m−1 pn−1,m−1
Pn−1,m−1
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where:

. n number of job.m number of machines. Emax energy limit.H horizon.muj,i machine index, on which operation i of job j has to be processed. pj,i processing time of operation i of job j. Pj,i power consumption operation i of job j

After calculation programs return a schedule. Output schedule format:

ord0,0 s0,0 ord0,1 s0,1 ... ord0,n−1 s0,n−1
ord1,0 s1,0 ord1,1 s1,1 ... ord1,n−1 s1,n−1
...
ordm−1,0 sm−1,0 ordm−1,1 sm−1,1 ... ordm−1,n−1 sm−1,n−1

where:

. ordm,k index of a job that is on position k in processing order on machine
m. sm,k start time of the operation that is on position k in processing order
on machine m

The remaining folder contain C++ source code of the methods. Folder
name represent method name. Heuristic methods located in heuritic folder.
For compiling a program go to the folder method name and run commands

cmake ./
make
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File heuristic\Algorithm_parameters.h contains define directives for com-
piling certain heuristic methods. For all binary the first parameter is instance
file, the second parameter is timeout (sec). Tables A.1 shows set of directives
for compiling corresponding methods.

Method LONGEST PATH EXACT CALCULATION ONE WORKER
HM-RW
HM-LP •
EM-RW • •
EM-LP • • •

Table A.1: Compilation parameter
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